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Abstract. Symmetry analysis of the surface of anatomical structures
offers good promise for diagnosis, follow-up and therapy planning of
pathologies causing abnormal deformities. This paper addresses the prob-
lem of detecting and modelling symmetry of bilateral structures, even in
cases where the transformation between the two lateral parts is not a
simple planar reflection but a symmetry with respect to a curved sym-
metry surface. We describe a new method to compute a piecewise curved
symmetry surface for 3D objects. The algorithm is based on the computa-
tion of a 3D symmetry line, which defines strips by orthogonal slicing. A
local symmetry plane is computed for each strip by an ICP-like method.
The set of all local symmetry planes forms a piecewise symmetry surface.
The method is first validated on parametric objects. Then, we show its
potential as a non-invasive technique for the study of patients affected
by scoliosis. Finally, our approach is generic enough that it could be
extended to other medical applications such as facial dysplasia.
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1 Introduction

Reflection is one of the main characteristics of many human anatomical struc-
tures. Its loss is often linked to pathologies causing abnormal deformities. Anal-
ysis of the 3D symmetry of the anatomical structure surface gives very useful
information for diagnosis, follow-up or therapy planning. With the development
of 3D medical imaging, quantifying automatically the symmetry in 3D data of
anatomical structures (either as 3D image or 3D mesh) has become an important
research topic in medicine, especially for brain [17], face [7] or back pathologies
[9]. For example, some recent work [17] on the brain proposed an algorithm to
extract a 3D symmetry surface, which results in a better left/right hemisphere
segmentation. Moreover, the deviation of this symmetry surface with respect to
the anatomical sagittal plane allows one to characterise brain torque [11].
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Nevertheless, most of the work dealing with algorithms to detect automat-
ically 3D symmetry in anatomical structures focuses on planar symmetry [15].
Symmetry is then quantified by finding a symmetry plane Π, aligning the origi-
nal structure with its corresponding reflection with respect to this plane and by
analysing point-to-point distances [10]. For a straight bilateral structure, there
exists a unique reflected point y that corresponds to a point x with respect to
Π and conversely. However, it is well-known that most of bilateral anatomical
structures do not present a planar symmetry but a “curved” symmetry [13]. In
this case, we may not have a unique correspondence between x and y but several
reflected points yi for a unique original point x (see Fig. 1).

Fig. 1. Differences between a planar and a curved symmetry

Related Work. Methods to compute curved symmetry surfaces can be sepa-
rated into three groups.

The first group of methods is based on 2D slicing. Lee et al. [12] cut the 3D
structure along parallel planes and get a set of 2D slices. They then propose
an algorithm to obtain a 2D curved glide-reflection symmetry for each slice. By
interpolating all the 2D symmetry curves, they obtain a parametric 3D symmetry
surface. However, their method depends heavily on the chosen orientation for the
2D slicing procedure.

The second group is based on a refinement of a global symmetry plane. Sato
et al. [16] use the Hough transform to estimate an initial symmetry plane. Two
refinement processes to obtain a symmetry surface are then proposed. The first
one uses a quadratic fitting function instead of a plane. The second process
consists in applying the planar symmetry detection method only to the contour
points within a local window and extracting the curved symmetry by linking
local planar symmetries detected at each point along the occluding contour. In
his Ph.D. thesis, Combès [3] computes an initial symmetry plane by an ICP-
based method and divides the 3D mesh orthogonally to this plane. For each
submesh, a new symmetry plane is estimated and the surface of symmetry is
globally parametrised with a Leclerc function. It is then assumed that the curved
symmetry can be seen locally as a planar symmetry. However, the results of this
group of methods are limited to anatomical structures which are not too curved
due to the global smoothness of the fitting functions.

A third group can be defined by the approaches that are specific to brain
applications. They are based on 3D MR images of the brain and use the variation
of intensities of the cerebral structures. For example, Kuijf et al. [11] segment
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the brain in the MR image and detect automatically the interhemispheric fissure
that gives an initial symmetry plane. Then, control points are defined to deform
this initial symmetry plane into an optimised surface, modelled by a bicubic
spline. After the approximation of a symmetry plane of the brain, Davarpanah
et al. [5] propose a refinement process that is applied on 2D slices of the 3D MR
images based on fractal dimension and specific intensity values of the cerebral
structures. A symmetry surface is eventually constructed as a stack of resulting
curves in different slices. Stegman et al. [17] suggest to compute symmetry pixels
in 2D slices of the 3D MR brain image maximising a local symmetry measure
based on a correlation coefficient and the image intensity at the slice centre voxel.
All these methods cannot be directly generalised to other anatomical structures,
especially if the latter are given as 3D meshes.

Contributions. Due to the 2D character of the first class of methods and the
specific application of the third class, we choose to focus on the second class and
propose to generalise their application to large bending.

In this paper, we introduce a new method for automatically assessing the
curved reflection of a 3D mesh by extraction of a piecewise symmetry surface.
We present this algorithm in detail in Sect. 2: a set of local symmetry planes
is computed and forms a piecewise symmetry surface. In Sect. 3, we assess our
approach on parametrical 3D meshes. In Sect. 4, we study its application to 3D
meshes of the back of patients affected by scoliosis.

2 Piecewise Symmetry Surface Extraction

Our method is designed to automatically detect a piecewise symmetry surface
of a 3D mesh even in the case of a very curved structure. In practice, we choose
to decompose the 3D mesh into a set of strips Si which are defined orthogonally
to a free-form 3D curve L which we call “symmetry line” and then compute
their planes of symmetry Πi. The method is iterative and begins with an initial
symmetry line and strips. At each step n, we get a new set of Πn

i . At the end of
the iterative process, when the symmetry line is stable, we obtain an optimised
set of local symmetry planes that we fuse to form the piecewise symmetry surface
of the 3D mesh. The overview of the iterative method is illustrated Fig. 2 and
we describe each step in the following.

2.1 Determination of the Initial Symmetry Line and Strips

To initialise the symmetry line and the strips, we decompose roughly the 3D
mesh into submeshes that we call regions where the symmetry is consistent.
For this, the user manually defines two points on the 3D mesh that describe a
straight line. Between this couple of points and perpendicularly to the direction
of the line, we define NR regions delimited by (NR + 1) equidistant and parallel
planes. NR is defined by the user.

The Principal Component Analysis (PCA) method is applied to every sub-
mesh to compute their principal axis for a coarse estimate of the direction of the
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Fig. 2. Piecewise symmetry extraction method

regions. We then subdivide each region orthogonally to its axis into NS equidis-
tant surface strips Si. This step is illustrated Fig. 3. In fact, the NR axes define
the initial symmetry line.

Fig. 3. 2D illustration of the computation of the initial symmetry line and strips

In practice, for general objects, the two seed points are chosen at the extrem-
ities of the structure and belonging to the symmetry surface.

2.2 Computation of Local Symmetry Planes

Initialisation. If a surface is perfectly symmetrical, it is well-known that its
symmetry plane is orthogonal to a PCA axis [18]. So PCA is used to initialise
the symmetry plane Π0

i for each strip Si. We roughly define the direction of the
symmetry and the PCA axis that has the closest orientation is selected to act as
the normal unit vector u0

i of Π0
i . We assume that Π0

i goes through the centroid
of Si which defines the distance d0i to the origin. The couple (u0

i , d0i ) gives an
initial symmetry plane Π0

i for each strip Si.
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Optimisation. For each strip Si, we launch the Iterative Closest Point (ICP)-
like algorithm described in [4]. This method directly computes the parameters of
the optimal symmetry plane for bilateral objects presenting a perfect or imper-
fect reflection symmetry. To make the method more robust, we integrate the
TrimmedICP (trICP) algorithm proposed by Chetverikov et al. [2]. While the
standard ICP algorithm assumes that all data points can be paired, trICP rejects
outliers points. The optimisation of the symmetry plane localisation follows an
iterative scheme. At iteration n of the algorithm, we have the 3 following steps:

(1) The points of the strip Si are reflected with respect to the current estimated
symmetry plane Πn

i . Using the k-d tree method, each point xk of Si is paired
with the closest reflected point of Si. From the set of registered point couples
(xk;yn

k) obtained, the individual squared distances are computed and sorted
in increasing order. We only select the first qiNi couples of points, with qi
the overlap rate from the trICP and Ni the number of points included in
the strip Si. The optimal value of qi is searched in a range of [0.4; 1.0] by
minimising the Mean Squared Error of distance (xk, yn

k) while trying to use
as many points as possible [2]. Notice that (xk, yn

k) is different at each step
as it depends on Πn

i .
(2) The parameters (un+1

i , dn+1
i ) of the new estimation of the symmetry plane

of Si are computed by the two following formulas given in [4]:
– un+1

i is collinear with the eigenvector corresponding to the smallest eigen-
value of the 3 × 3 matrix Un+1 defined as:

Un+1 =
∑

(xk;yn
k)

(xk−g1+yn
k−g2)(xk−g1+yn

k−g2)T−(xk−yn
k)(xk−yn

k)T

with g1 = 1
N

∑
xk and g2 = 1

N

∑
yn

k .
– dn+1

i = 1
2 (g1 + g2)Tun+1

i

(3) Go back to step 1 if the mean distance between (xk,yn
k) has changed between

the iterations and if a maximal number of iterations has not been reached.

Finally, we obtained a local symmetry plane Πi for each strip Si and therefore
a set of local symmetry planes which forms the piecewise symmetry surface.

2.3 New Symmetry Line Computation

For each Πi, we note Pinf
i and Psup

i the 2 points that are defined at the inter-
section between the surface, Πi and respectively the inferior and superior plane
of the strip. We compute the (NS + 1) symmetry points Psym

i as the middle
between Psup

i and Pinf
i+1 (see Fig. 4). The new symmetry line L is formed by the

interpolation of the set of symmetry points Psym
i by a third order parametric

spline curve.
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2.4 Definition of the Strips Based on the Symmetry Line

This symmetry line L acts as a base for creating new adaptive strips Sa
i (see

Fig. 5). Each new adaptive strip Sa
i is defined as the intersection between the

object surface and two planes:

– The superior plane of the strip is characterised by the vector defined by Psym
i+1

and Psym
i+2 and passing through Psym

i+1 .
– The inferior plane of the strip is characterised by the vector defined by Psym

i

and Psym
i−1 and passing through Psym

i .

Fig. 4. 2D illustration of the computation of the symmetry points

Fig. 5. 2D illustration of the strip refinement
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3 Validation on Parametrical 3D Meshes

3.1 Method

To validate our method on objects presenting curved reflection, we generate
mathematically different swept 3D meshes which are curved and we assess the
method accuracy with respect to bending. We define a half-ellipse in the plane
(Oxy) centered in (0, 0, 0), with a semi-major axis of 20 mm along Ox and a semi-
minor axis of 10 mm along Oy. The symmetry point of this half-ellipse is then
located at (0, 5.0, 0). We extrude this curve along a 3D parametric curve involving
cosine and sine. Each model is sampled into a 3D mesh made of 75 000 vertices.
The set of meshes is shown in the Table 1. The extrusion of the symmetry points
of the half-ellipse gives the symmetry line. For a height z, the theoretical local
symmetry plane is given by the binormal of the Frenet-Serret frame along this
symmetry line.

We can then compare our piecewise symmetry surface to this theoretical
plane both in localisation and orientation. For the localisation we compute the
depth and lateral Root Mean Square Deviations, defined as the quadratic mean
of the distances projected along an axis: Oy for RMSDdepth and Ox for RMSDlat.
We assess the orientation of each local symmetry plane by calculating the angle
θ defined as θ = arccos(n.u), where n is the normal unit vector of the theoretical
symmetry plane and u is the normal unit vector of the symmetry plane obtained
by our method.

3.2 Results

Our method was implemented in Matlab (R2015a). We have chosen 4 regions
(NR = 4) and 5 strips have been created in each of them (Ns = 5). The number of
iterations is arbitrarily fixed at 100 for each strip. Table 1 shows the comparison
of our piecewise symmetry surface (in red) with the theoretical one.

Table 1. Evaluation of the proposed method on geometrical swept models

Model 1 2 3 4 5 6 7

RMSDlat (mm) 0.16 0.50 0.64 0.80 0.62 1.10 1.75
RMSDdepth (mm) 0.00 0.01 0.02 0.02 0.01 0.03 0.09
Mean value θ (◦) 0.5 1.3 1.9 2.2 1.8 2.8 4.0

Maximum value θ (◦) 2.1 2.37 4.5 5.9 3.9 6.4 11.1
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The maximums for both the distance and the orientation θ are always
observed at the apex section of the curve. This can be explained by the defini-
tion of the local symmetry plane. We assume that for a planar symmetry and by
extension for small bending surface, we have xk = SΠ(yn

k) and yn
k = SΠ(xk).

However, for large bending yn
k = SΠ(xk) is not guaranteed. This is why the

orientation of our plane does not perfectly match the orientation of the Frenet-
Serret frame, which is only an approximate solution along the translated 3D
curve used as trajectory during the mesh generation. We observe that one iter-
ation of the refinement is enough to obtain stable symmetry lines and good
results, but it may be necessary to carry out additional iterations for more com-
plex structures.

Comparing to other existing methods, our method promises good results.
The method proposed by Sato et al. [16] seems to fail for surfaces with a single
bending which is smaller than ours. In the same way, the methods proposed by
Combès [3] and Lee et al. [12] are limited for detecting symmetry of structures
with large or multiple curvatures, due to their initialisations. In particular, the
initial slicing process of the 3D mesh proposed by [12] is only parallel and so will
negatively affect the results in case of curved structures.

4 Application to Scoliosis

Scoliosis is characterised by a lateral deviation of the spine, associated to a local
axial rotation of vertebrae in the horizontal plane. This 3D spinal deformity
may lead to severe impairment of the outer appearance of the back surface. To
limit hazardous X-ray examinations prescribed during the treatment, there is
a growing interest for non-invasive methods based on 3D measurements of the
back mesh [1,9].

The aim of these methods is to find 3D parameters that yield better quantifi-
cation of the back deformation. In particular, one of the interesting parameters
to assess scoliosis is the left/right asymmetry in order to determine the number,
direction and location of deformed parts for classifying the scoliosis [1]. We apply
our method to the 3D meshes of the backs of patients affected by scoliosis with
the following parameters:

– The initial direction of the subdivision of the back into regions is computed
from the straight line defined by the prominent vertebra and the middle of
the posterior superior iliac spine. In order to fully automate the method, the
detection of these anatomical landmarks may be based only on the surface
curvature as proposed in [8].

– We used 3 regions and 6 strips per regions to represent the 18 vertebrae
localised between the two seed points. An adaptation of the height of each
strip to the height of each vertebra is statistically computed from the height
of the spine.

The result on one example of a scoliotic patient can be seen in Fig. 6.
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Fig. 6. 3D piecewise symmetry surface of the back of a scoliotic patient. Notice how
the orientations of the local planes (in green and red) follow the back deformations.
(Color figure online)

4.1 Symmetry Line of the Back Mesh

The lateral deviation and the anteroposterior curvature are measured with
respect to the spinal midline, which is the line that passes over the centre point
of the vertebral bodies. The midline can be estimated by the symmetry line of
the back shape [9]. We have already showed the potential of a simpler version
of our method to compute the symmetry line for 3D objects [14]. The compari-
son between the line manually determined by landmarks placed by clinician and
this symmetry line assesses the mean error deviation to 5.8 mm, the RMSDlat

to 4.82 mm and the RMSDdepth to 0.69 mm. These indicators remain constant
with the variations of the disease severity and patient morphology. These results
demonstrate that the method is consistent with the reference method and robust
with respect to the disease severity and the patient morphology.

4.2 Vertebral Rotation

We propose to use our new method to evaluate the local back surface rotation
that can be correlated to the axial rotations of vertebrae [9]. 51 scoliotic patients
were acquired with the BIOMODTM system1. This device provides bi-planar
radiographic 3D reconstructions of the spines coupled with optical acquisitions
of back surfaces. They are both expressed in a patient-specific reference system.
For each vertebra, we have the 3D coordinates of the spinous process, noted S,
and the centre of the vertebra C. We compute the direction SC and we recover
its projection in the horizontal plane. In the same way, we compute the horizontal
component of the direction provided by the local symmetry plane corresponding
to the same vertebra. We compute α the angle between these two directions,
as illustrated Figs. 7 and 8, for each vertebra for every patient. On the set of

1 Acquisition device developed by AXS Medical (DMS Imaging): http://www.dms.
com/biomod-3s/.

http://www.dms.com/biomod-3s/
http://www.dms.com/biomod-3s/


156 M. Morand et al.

the 51 patients, we get: α = 3.81◦ ± 2.93◦. This preliminary result seems to be
promising, considering those presented in [8].

Fig. 7. Comparison between the orientation of the local symmetry plane and the actual
vertebral rotation

Fig. 8. Example of a piecewise symmetry surface on the back of a scoliotic patient.
Note that red crosses correspond to spinous processes on the back surface and green
crosses to the centre of vertebrae. (Color figure online)

4.3 Adaptation to the Lateral Bending Posture

Patients are often examined in lateral bending as this position is optimal to
evaluate the spine flexibility for surgery planning. However most of the proposed
methods to analyse this pathology fail for asymmetric postures [6]. We apply our
method on a patient in bending posture (Fig. 9). Notice how the spine curve is
well emphasised by the piecewise symmetry surface.

5 Future Work

We have described a method for computing out a piecewise symmetry surface
on 3D meshes. Future work will focus on interpolating the piecewise surface
to obtain a continuous curved symmetry surface. To provide reproducible and
objective results, a fully automatic calculation of the method parameters (NR
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Fig. 9. Piecewise symmetry surface on the 3D meshes of the back of a patient in
bending (∼180 000 vertices and ∼360 000 faces).

Fig. 10. Computation of a piece wise symmetry surface of a 3D face mesh (∼41 000
vertices and ∼81 500 faces)
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and Ns in particular) based only on the 3D geometry will be proposed. On the
clinical side, we also plan to use our local symmetry planes for classification of
scoliosis [1]. Moreover, our approach could be extended to other medical appli-
cations such as facial dysplasia (see for example Fig. 10).
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